检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《交通运输系统工程与信息》2010年第1期128-133,共6页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(60776825);国家863计划(2007AA11Z208)
摘 要:在铁路当前的运输组织模式下,编组站阶段计划鲁棒性和列车到达计划兑现率的矛盾十分突出.为提高阶段计划的鲁棒性,本文运用随机规划方法,研究列车实际到达时刻随机条件下(相对于计划到达时刻)的阶段计划优化编制问题.以最大化阶段计划在列车到达时刻随机扰动下保持最优的概率为目标,建立阶段计划随机相关机会规划模型.并设计了随机模拟、禁忌搜索算法相结合的混合智能算法对模型进行求解.算例结果表明,本文构建的模型能取得鲁棒性较高的阶段计划,能为阶段计划计算机编制提供辅助决策支持.Under the current operation mode of railway,the contradiction between the robustness of stage plan and the arrival time of inbound trains becomes increasingly intense.To improve the robustness of the stage plan,this paper addresses the problem of optimizing the marshalling station stage plan with the random arrival time of the inbound trains(compared to the arrival time of inbound trains of schedule) by stochastic programming methods.A dependent-chance programming model is developed with the object function to maximize the probability of keeping the stage plan feasible under the fluctuation of inbound train's arrival time.Then,a hybrid intelligent algorithm based on stochastic simulation and tabu search is presented in the paper.The numerical experiments show that the algorithm can converge within a short time and the dependent-chance programming can produce a more robust stage plan and improves the decisino basis of the computer-aided dispatching plan.
关 键 词:铁路运输 编组站 阶段计划 随机相关机会规划 混合智能算法 鲁棒性
分 类 号:U294.1[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171