检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹永杰[1] 周继鹏[1] 王桂香[2] 林传权[2] 陈蔚文[2]
机构地区:[1]暨南大学计算机系,广东广州510632 [2]广州中医药大学脾胃研究所,广东广州510405
出 处:《计算机应用与软件》2010年第3期22-25,共4页Computer Applications and Software
基 金:国家自然科学基金重大研究计划重点项目(90209004)
摘 要:数据挖掘技术在中医辅助诊断中被日益重视,计算机辅助诊断本质上是一个数据挖掘分类任务。针对中医临床数据的模糊性和不完整性,提出了一种基于特征提取的分类集成模型。这种模型能将扰动训练数据和扰动输入属性结合起来,生成精确且差异度大的个体分类器。与单个分类器和其他集成方法的对比实验,证明这种新模型在脾虚证辅助诊断上有更低的错误率。进一步的实验显示特征提取在这种新模型中对降低错误率有显著的作用。Data mining attracts increasing attention in computer-aided diagnostic system of traditional Chinese medicine. In essential, computer-aided diagnosis is a classification task. The clinical data of traditional Chinese medicine is characterized by incompletion and ambiguity. According to this feature, in this paper we propose a new classification ensemble model which is based on feature selection. This model is able to generate precise individual classifier with big diversity by combining the disarrangements of training data and input attributes. The contrast experiments carried on with the single classifier and other integration methods prove that this new model has lower error rate in computer-aided diagnosis of Spleen asthenia. Further experiments indicate that the feature selection exerts an obviously positive effect in minimizing error rate.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222