检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232001 [2]中国科学院合肥智能机械研究所,安徽合肥230031 [3]中国科学技术大学信息学院,安徽合肥230027
出 处:《中国电力》2010年第3期46-50,共5页Electric Power
基 金:国家863计划资助项目(2006AA10Z237);国家自然科学基金资助项目(60774096)
摘 要:针对传统故障诊断方法存在的诊断准确性不高的问题,提出了基于D-S证据理论的多传感器信息融合技术与BP神经网络相结合的方法,实现对汽轮机的机械故障诊断。由多个传感器采集振动信号,分别经小波变换特征提取后获得故障特征值,再经BP神经网络进行故障局部诊断,得到相应传感器对故障类型的基本可信任分配函数值,即获得彼此独立的多个证据,然后运用D-S证据理论对各证据进行融合,最终完成对汽轮机机械故障的准确诊断。实验结果表明,该方法克服了单个传感器的局限性和不确定性,是一种有效的故障诊断方法。For the reasons of low fault diagnosis accuracy of traditional diagnosis methods, a fault diagnosis method fusing BP neural network and muhi-sensor information fusion technique based on D-S evidence theory was presented to realize machinery fault diagnosis of turbine. The fault features of the vibration signals multi sensors sample were extracted by using wavelet transform, and after these fault features were locally diagnosed through BP neural network the basic reliability distribution values of corresponding fault were got, namely multi independent evidences were got. Then all the evidences were fused using D-S evidence theory and veracious machinery fault diagnosis of turbine was realized. Experiment result shows that the presented method of fauh diagnosis overcomes the limitation and uncertainty of single sensor and it is a valid method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62