用支持向量机预测中药水提液膜分离过程  被引量:11

Forecasting membrane separation process of Chinese medicine's water extract with support vector machine

在线阅读下载全文

作  者:李玲娟[1] 翟双灿[1] 郭立玮[2] 潘永兰[2] 

机构地区:[1]南京中医药大学信息技术学院,江苏南京210046 [2]南京中医药大学中医药研究院,江苏南京210046

出  处:《计算机与应用化学》2010年第2期149-154,共6页Computers and Applied Chemistry

基  金:国家自然科学基金资助项目(30572374);江苏省高校自然科学研究指导性计划项目(06KJD520144)

摘  要:为了找出中药水提液膜过程中影响膜污染的主要原因和预测膜污染的程度以防止膜污染,研究用支持向量机分类、遗传神经网络于中药水提液膜中属性筛选。以筛选出的主要属性用支持向量机回归建模预测,讨论确定模型参数、模型优化等关键问题,并与神经网络运行结果对比分析。分析结果表明支持向量机回归算法对膜污染度的拟合效果和预测能力均好于对该问题分析的其他方法。With the purpose of finding the critical factors which exert great influences on membrane pollution in the filtration of Chinese medicine' s water extract and preventing membrane pollution by forecasting the pollution degree, we applied support vector classification (SVC) and genetic neural network to select main features, then we applied support vector regression (SVR) with main features to build model and forecast the pollution degree in the process. In addition, parameter selection and model optimization as key issues were fully discussed in this study. Meantime, model built from SVR was compared with artificial neutral network (ANN), thus it can be concluded that SVR is superior to other algorithms in forecasting and fitting membrane pollution degree.

关 键 词:支持向量机 遗传算法 神经网络 特征筛选 污染度预测 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TQ015.9[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象