基于BP神经网络的驾驶员昼夜动态空间距离判识规律  被引量:20

Law of BP Neural Network-based Space Distance Cognition of Driver in Dynamic Environment at Day and Night

在线阅读下载全文

作  者:赵炜华[1] 刘浩学[1] 赵建有[1] 杨立本[1] 殷利[1] 

机构地区:[1]长安大学汽车学院,陕西西安710064

出  处:《中国公路学报》2010年第2期92-98,共7页China Journal of Highway and Transport

基  金:国家自然科学基金项目(50778023)

摘  要:为研究昼夜动态环境中驾驶员对空间距离判识的规律,进行了实际道路试验。随机选取32名驾驶员分别在昼、夜环境中不同深度距离和速度下,判识红、绿色障碍物的空间距离,统计并检验驾驶员对红、绿色障碍物判识距离的差异,获得判识特征值;运用BP神经网络拟合距离判识结果,分析距离判识变化规律。结果表明:BP神经网络可以很好地拟合距离判识变化规律,精度优于现有模型;绝对距离和相对距离判识结果均随速度增加而减小,随深度距离增加而增大;夜间判识距离大于白天,驾驶员对相对距离判识准确性高。In order to study the law of distance cognition of driver in dynamic environment at day and night, authors carried out the actual road test. 32 drivers were randomly selected to separately recognize space distances of red and green obstacles under different depth distances and velocities at day and night. Authors analyzed cognition difference between red obstacles and green obstacles and got character values by statistical method. Distance cognition results were simulated by BP neural network and variation laws of space distance cognition were analyzed. Results show that BP neural network can well simulate variation laws of space distance cognition and precision of the model is higher than that of other models. Cognitive absolute distances and relative ones decrease with increase of speed and augment with increase of depth distance. Cognition value at night is larger than that at day and driver's cognition accuracy of relative distance is higher than that of absolute ones.

关 键 词:交通工程 驾驶员 BP神经网络 距离判识 交通心理 深度距离 照度 

分 类 号:U491.254[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象