基于油液光谱LSSVR-AR模型的发动机故障预测  被引量:4

Engine Fault Prediction Based on Oil Spectrum Data LSSVR-AR Model

在线阅读下载全文

作  者:徐超[1] 张培林[1] 任国全[1] 李兵[1] 吴定海[1] 

机构地区:[1]军械工程学院一系,河北石家庄050003

出  处:《内燃机学报》2010年第2期160-164,共5页Transactions of Csice

基  金:国家自然科学基金资助项目(50705097);清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF09B06);军械工程学院基金资助项目(YJJXM08009)

摘  要:针对传统油液光谱数据预测模型精度有限的不足,提出了一种基于最小二乘支持向量回归(LSSVR)与AR模型相结合的非平稳时间序列建模方法(LSSVR-AR),并应用于某型履带车辆发动机油液光谱数据及故障的预测。首先对非平稳时间序列进行最小二乘支持向量回归,得到非平稳时间序列的趋势项及剔除趋势项后的随机项;然后对随机项建立AR模型并与趋势项的LSSVR模型组合,得到非平稳时间序列模型;最后用所建模型对油液光谱数据及发动机故障进行预测。用所提建模方法对Fe、Cu、Pb、Si光谱数据预测的平均绝对百分比误差分别为1.987%、2.889%、2.343%、6.860%,明显低于其他模型。实例证明,所提模型能对发动机故障进行准确预测。To improve prediction accuracy of traditional oil spectrum models,a LSSVR-AR(least square support vector regression and auto-regression model)based non-stationary time series model is proposed and applied in the oil spectrum data to predict the fault of a specified track vehicle engine.Firstly,least square support vector regression is used to non-stationary time series to abstract the tendency.The stochastic components are obtained after the tendency is eliminated.Secondly,stochastic components are modeled with auto-regression model and then combined with LSSVR model to form the non-stationary time series model.Finally,the constructed model is used to predict oil spectrum data and engine fault.Prediction mean absolute percentage error of Fe,Cu,Pb and Si spectrum data are 1.987%,2.889%,2.343%,6.860%,respectively,and they are obviously lower than the other models.The proposed model has reliable precision in predicting engine fault.

关 键 词:最小二乘支持向量回归 AR模型 非平稳时间序列建模 油液光谱数据预测 故障预测 

分 类 号:TK401[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象