检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院 [2]北京城建设计研究总院,北京100037
出 处:《中国安全科学学报》2010年第2期41-45,共5页China Safety Science Journal
基 金:国家重点基础研究("973")项目(2002CB412702);国家自然科学基金重大项目资助(50490271)
摘 要:在隧道施工过程中,为准确、及时地进行围岩快速分级,引入BP神经网络方法,通过制定快速分级参数标准,对已经开挖的隧道工作面按照隧道围岩分级规范进行分级,并测量其快速分级参数,将围岩分级的结果与其对应的快速分级参数建立BP神经网络的训练集合,从而得到围岩分级模型。最后测量正在开挖隧道工作面的快速分级参数,并提供给模型进行判别,从而达到快速、精确分级目的。通过某隧道围岩样品实例验证,该模型判断结果与实际施工情况吻合,可用于指导施工阶段的隧道围岩快速分级。In order to achieve a rapid,accurate classification of surrounding rock in tunnel construction,a tunnel face that has been excavated is firstly graded according to the classification standard of surrounding rock and its corresponding grading parameters are measured.Then,the grading results and their corresponding parameters are used as a study sample set to train a BP neural network,and a rapid grading model for surrounding rock is obtained.Thus,if the grading parameters measured in tunnel site are put in the model,the model can make a rapid judgment of the grades of the surrounding rock.Actual application shows that this model can precisely work out the grade of surrounding rock and can be applied to direct the rapid classification of surrounding rock in construction stage.
关 键 词:快速分级 分级参数 BP神经网络 训练集合 隧道围岩
分 类 号:X947[环境科学与工程—安全科学] U455[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.154