检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长春工业大学计算机学院,长春130012 [2]吉林农业大学信息技术学院,长春130118
出 处:《长春理工大学学报(自然科学版)》2010年第1期159-163,共5页Journal of Changchun University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(60573182)
摘 要:作为一种经典的文本分类算法,KNN简单、实用,在许多实际系统中有广泛的应用,但若待分样本位于易判区域时,KNN却做了许多无用计算。基于此,本文提出一种改进算法,借鉴于蚁群算法,引入了组相似度这个新颖概念,使得当待测样本位于易判区域时,能很快得出判定结果;当待测样本位于难判区域时,该算法退化为KNN的原始算法。As a classic text classification algorithm,KNN is simple,practical and widely used in many practical system .however,if the sample which is being tested is in the easy-to-judge region,original KNN made a lot of useless computation.based on it.Referring to ant-colony-algorithm,this paper proposes an improved algorithm. The group-similarity,as a novel conception,is put forward.When the sample being tested is in the easy-to-judge region,the algorithm can quickly complete the procession;even though the sample is in the difficult-to-judge region,the algorithm complete it in the almost same time as original KNN. Experiments also shows that its precision rate and recall rate are not lower than original KNN.
关 键 词:KNN 文本分类 待测样本 蚁群算法 易判区域 难判区域 组相似度
分 类 号:TP391.12[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188