织物变形舒适性的双群粒子群聚类研究  被引量:3

Clustering study of fabric deformation comfort using bi-swarm PSO algorithm

在线阅读下载全文

作  者:王永林[1] 王东云[1] 

机构地区:[1]中原工学院电子信息学院,河南郑州450007

出  处:《纺织学报》2010年第4期60-64,共5页Journal of Textile Research

基  金:河南省自然科学基金资助项目(072300410400);河南省高校科技创新人才支持项目(2008HASTIT020)

摘  要:针对传统聚类方法存在的一些问题,提出了一种具有个体交换策略的双群粒子群聚类方法,群1根据一个基于适应度的非线性公式动态更新惯性权重,群2采用固定权重,每进化一代,2群交换部分个体。将该方法应用于织物变形舒适性聚类中,以聚类中心作为粒子位置,通过粒子群优化算法获得最优聚类中心,采用最小距离准则对样本进行聚类。最后与模糊聚类做了简单比较,结果表明该方法结论合理,便于应用,为选择服装面料和评价织物性能提供了一种新手段。Aiming at solving the problems of some traditional cluster methods,an improved cluster method based on bi-swarm particle swarm optimization(PSO) algorithm with exchanging particles strategy was proposed.One swarm dynamically updated its inertia weight by a new nonlinear updating formula,and the other employed a constant inertia weight.The two swarms exchanged some particles after each iteration.The method was applied to the cluster of fabric deformation comfort and took the cluster center as the position of the particle.The optimal cluster center was obtained by PSO algorithm optimizing and the sample data were clustered using the minimum distance criterion.The comparison results between fuzzy cluster results and PSO-based cluster shows that the proposed method can get the proper cluster result and provides a new approach to clothing fabrics selection and evaluation.

关 键 词:变形舒适性 双群粒子群算法 模糊聚类 织物评价 

分 类 号:TS101[轻工技术与工程—纺织工程] TP181[轻工技术与工程—纺织科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象