检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余先川[1] 初晓凤[1] 曹恒智[1] 胡丹[1]
机构地区:[1]北京师范大学信息科学与技术学院,北京100875
出 处:《地球物理学进展》2010年第1期316-323,共8页Progress in Geophysics
基 金:北京市自然科学基金(4062020);国家自然科学基金(40672195;40372129);国家863计划(2007AA12Z156);教育部新世纪优秀人才支持计划项目联合资助
摘 要:为解决与光学遥感图像不同的合成孔径雷达(SAR)图像中存在大量混合像元的问题,本文提出了一种基于拉格朗日分解算法的SAR图像混合像元分解的方法,结合相关内容中具体定理的证明,文中给出拉格朗日分解算法用于SAR图像混合像元分解的系统的求解方法.用人工模拟SAR图像和ENVISAT SAR图像进行实验,结果表明拉格朗日分解算法的混合像元分解结果明显优于非约束类神经网络(文中实验以BP神经网络为例)的分解结果.For resolving the problem of mixed pixels that the Synthetic Aperture Radar (SAR) image has which is different from optical remote sensing image, we apply the Lagrangian constrained neural network to decomposition of SAR image mixed pixels. Combining the demonstration of specific theorem in relevant content, we propose a systemic solving method which uses Lagrange constrained neural network decompose the mixed pixels of the SAR image. We make experiments on artificial simulated SAR images and ENVISAT SAR images. Experimental results show that the Lagrangian constrained neural network can get significantly more precise results than other neural network which does not contain restrictive conditions, (such as the BP neural network).
关 键 词:合成孔径雷达 混合像元分解 神经网络 拉格朗日约束 空间数据挖掘 盲源分离
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185