关于粘滞迭代的一个强收敛定理  

Strong Convergence Theorem of Viscosity Approximation Methods

在线阅读下载全文

作  者:田明[1] 张帅[1] 仇实[1] 

机构地区:[1]中国民航大学理学院

出  处:《中国民航大学学报》2010年第2期54-57,共4页Journal of Civil Aviation University of China

基  金:天津市自然科学基金项目(06YFJMJC12500)

摘  要:在一致光滑的Banach空间E中,C是E中非空闭凸子集,f:C→C是压缩映像,T:C→C是非扩张映像且不动点集合F(T)非空,x0∈C是任一初始点,由粘滞迭代xn+1=αn f(xn)+(1-αn)Txn构造的序列{xn}在∣‖Tzn-xn‖-‖zn-xn‖∣=o(βn)条件下强收敛于T在C中的不动点。Let E be a uniformly smooth Banach space,C a nonempty closed convex subset of E. Let f: C→C be a contractive mapping,and T: C→C be a nonexpansive mapping with the set of fixed point F(T)≠0,the initial guessx0∈C is chosen arbitrarily. Under|Tzn-xn-zn-xn|=0(βa) ,the sequence [xn} defined by xn+1=αnf(xn)+(1-αn)Txn,, strongly converges to a fixed point of T on C.

关 键 词:粘滞迭代 压缩映像 非扩张映像 不动点 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象