基于多保留策略的复合型遗传算法及其收敛性分析  被引量:2

Composite genetic algorithm and its convergence analysis based on multi-reserved strategy

在线阅读下载全文

作  者:刘立民[1] 马丽涛[1] 庞彦军[1] 李法朝[2] 

机构地区:[1]河北工程大学理学院,河北邯郸056038 [2]河北科技大学经济管理学院,河北石家庄058021

出  处:《河北工程大学学报(自然科学版)》2010年第1期103-108,共6页Journal of Hebei University of Engineering:Natural Science Edition

基  金:河北省自然科学基金项目(F2009000857)

摘  要:遗传算法(GA)作为一种新型的智能优化方法,以其结构简单、适应性强等特点在众多实际领域取得了成功的应用,但存在计算复杂度大、易于局部收敛等方面的不足。本文在分析现有遗传操作的不足和生物进化的基本特征基础上,从提高进化效率的角度出发,提出基于多保留策略的复合型遗传算法(简称MRS-CGA);进而利用Markov链理论和仿真技术,从不同的层面分析了算法的性能。讨论结果表明,算法从本质上推广了常规的GA,在计算效率和收敛性能上均明显地优于常规的GA。As a new kind of intelligence optimization method, genetic algorithm, with the features of simple structure and strong adaptability, achieves great success in many real fields, but still there are some shortcomings such as greater computation complexity and more chance of being trapped into local states. This paper analyzes the deficiency of the existing genetic operation and the essential characteristics of creature evolution to improve evolution efficiency, and proposes a composite genetic algorithm based on multi- reserving strategy (MRS - CGA for short). Moreover, it analyzes the performances of MRS - CGA by the theory of Markov chains and simulation technology. All the results indicate that, MRS- CGA is essentially the extension of ordinary GA, and obviously better than ordinary GA in computation efficiency and convergence performance.

关 键 词:遗传算法 复合型遗传算法 多保留策略 收敛性 MARKOV链 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象