检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工业大学理学院,江苏南京210009 [2]南京邮电大学信号与信息研究所,江苏南京210003 [3]南京工程学院基础部,江苏南京211167
出 处:《应用数学》2010年第2期345-352,共8页Mathematica Applicata
基 金:Supported by the National High Technology Research and Development Program of China (863 Project)(2006AA010102);the Young Teacher Academic Fund of Nanjing University of Technology
摘 要:本文针对压缩感知理论中BP算法的l1最优化问题,构造了一种新的信号重构的极大熵方法.极大熵方法克服了l1最优化问题的非光滑性,同时根据同伦方法构造极大熵函数的最优解序列来逼近全局最优稀疏解.数值实验表明极大熵方法是十分有效的信号重构方法.The emerging theory of Compressed Sensing (CS) has led to the remarkable results that compressible signal can be reconstructed using only a small number of measurements.Significant attention in CS has been focused on Basis Pursuit (BP),exchanging the sparseness constraint with the l1 norm.In order to overcome the nonsmooth problem in l1 norm,this paper proposes a new Maximum Entropy Function Method (MEFM) to solve the l1 optimization problem via smoothing the objective function with maximum entropy function.Intimately relating to homotopy method,MEFM provides a systematic approach for deriving the global optimal sparse solution.Finally,the numerical results show that it is an effective technique for signal reconstruction.In a CS framework,MEFM is a usefully alternating method to solve the l1 optimization problem.
分 类 号:TN912[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.83.143