检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军第二炮兵工程学院,陕西西安710025
出 处:《机器人》2010年第3期334-343,共10页Robot
基 金:国家863计划资助项目(2006AA04Z258)
摘 要:为了解决机器人在未知环境下的动态目标追踪问题,提出了一种基于扩展式卡尔曼滤波的估计算法.该算法将机器人、环境特征以及目标状态作为整体来构成系统状态,因此在迭代过程中系统各对象状态能够逐步建立起足够的关联性,从而提高了目标状态估计的准确性.进一步将该算法和基于占用栅格地图的动态物体检测方法相结合以获取目标和环境观测值,使算法最终能够应用于实际环境.另外,算法设计的数据关联环节能够有效处理目标伪观测值对系统状态估计的干扰.仿真实验和实体机器人实验结果验证了该算法的准确性和有效性.In order to solve the problem of moving object tracking by robot in unknown environment,an estimation algorithm based on extended Kalman filter(EKF) is proposed.The states of robot,environment feature and object are used to form system state as a whole in the algorithm,such that sufficient relation is established gradually among states of different objects in iteration process,which improves accuracy of object state estimation.Moreover,a method of moving object detection based on occupancy grid map is combined with our algorithm to obtain the measurements of moving object and environment landmarks,so that the final algorithm can be used in actual environment.Furthermore,the step of data association proposed in algorithm can deal with the system state estimation disturbance caused by false object observations.Simulation experiment and real robot experiment results prove the effectiveness and accuracy of the presented approach.
关 键 词:同时定位与地图构建 占用栅格地图 动态物体检测 目标跟踪 扩展式卡尔曼滤波
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.207