检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学的实践与认识》2010年第9期133-138,共6页Mathematics in Practice and Theory
摘 要:为了充分利用SVM在个人信用评估方面的优点、克服其不足,提出了基于支持向量机委员会机器的个人信用评估模型.将模型与基于属性效用函数估计构造新学习样本方法结合起来进行个人信用评估;经实证分析及与SVM方法对比发现,模型具有更好、更快、更多适应性的预测分类能力.In order to make full use of the strong points and to overcome the weak points of Support Vector Machine(SVM) on the credit scoring prediction problem, a personal credit scoring model is proposed based on committee machine of support vector machine(SVM- CM). Utilizing this model together with the approach of using the utility functions estimated for attributes to extract learning samples from the credit scoring prediction problem, comparing its performance with SVM ,the experiment results show the model with better, quicker classification accuracy and being more compatible with classification problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249