检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭宙[1] 杨学智[1] 司银楚[1] 朱庆文[1] 牛欣[1] 沙洪[2]
机构地区:[1]北京中医药大学,北京100029 [2]中国医学科学院生物医学工程研究所,天津300192
出 处:《世界科学技术-中医药现代化》2010年第2期185-187,共3页Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology
基 金:科技部国家"十五"科技攻关项目(2004BA721A09):中医脉象信息采集关键技术研究;负责人:牛欣;科技部国家"十一五"科技支撑计划(2007BAIA107A23):便携式辅助诊疗设备开发和导航针刀应用技术开发;负责人:杨学智;国家自然科学基金重点项目(30672583):基于动态三维指感脉图的中医脉诊方法学研究;负责人:沙洪;高等学校科技创新工程重大项目培育资金项目(V.200801):指感施压和微阵列传感的中医脉诊信息获取技术;负责人:牛欣
摘 要:目的:比较常用分类算法对脑梗死的分类预测能力。方法:将反映动脉弹性的6个脉搏波参数加年龄、性别一共8个指标作为每个样本的特征。把样本按3∶1随机分为训练集和测试集两部分。分别利用人工神经网络(ANN)、贝叶斯(Bayes)、决策树(Decision Tree,DT)、K邻近法(k-NN)、支持向量机(SVM)算法构造分类器,使用各分类器对训练集样本进行学习以建立分类预测模型,再用测试集测试各个模型的分类准确度。结果:SVM分类器和DT分类器效果较好,准确率超过80%。结论:以反映血管弹性的脉搏波参数结合性别、年龄作为特征并使用SVM或者DT算法来构建分类预测模型,有一定实用价值。This study aimed to compare the classifying ability of common classification algorithms in cerebral infarction prediction. Age, gender and 6 pulse wave indexes related with arterial elasticity were taken as the characteristics of each case. These cases were divided into two sets (the training set and the test set) at a ratio of 3 to 1. Several classifiers were constructed with the algorithms of ANN, Bayes, Decision Tree, k-NN and SVM. The modules of these classifiers were constructed by training the cases in the training set. The classification accuracy of these modules constructed with different algorithms was determined by testing each module with the cases in the test set. The classifiers constructed with SVM and DT had better performance (accuracy〉80%). Taking the age, gender and 6 pulse wave indexes related with arterial elasticity as the case characteristics and using SVM or DT algorithm to construct modules for cerebral infarction prediction may have some practical potential.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175