检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫旺[1] 李郁侠 师彪[1] 孟欣[1] 李鹏[1] 牛艳利[1]
出 处:《沈阳农业大学学报》2010年第1期64-68,共5页Journal of Shenyang Agricultural University
基 金:国家火炬计划基金项目(07C26213711606);陕西省自然科学基础研究计划项目(SJ08E220)
摘 要:针对离散粒子群应用于机组负荷优化问题中存在早熟收敛的难题,提出了动态规划-自适应离散粒子群算法求解机组负荷优化组合问题。该方法首先保证所有随机生成的粒子均为满足基本约束条件的可行解,使整个算法只在可行解区域内进行动态优化搜索,缩短了计算时间。计算实例表明:动态规划-自适应离散粒子群算法能较好地收敛到最优解,而且该方法得出的解具有精度高、收敛速度快的优点,应用效果优于动态规划法和离散粒子群算法,说明该方法是有效的、合理的,具有较好的应用前景。To solve the optimization premature convergence problem of power plant units load commitment by using the binary particle swarm optimization algorithm,Dynamic programming-adaptive discrete particle swarm optimization algorithm has been designed for unit load optimization combination problem.A new strategy of this method for particles generation was dynamically searched for which could firstly make all the random particles feasible and narrow the search space within the feasible solutions with shorter computing time.The results of calculation examples showed that the presented algorithm could be significant for converging to optimal solution,and that the solution of the presented algorithm possessed high precision and the high convergence speed.This method was valid and reasonable with good application prospects in engineering application,whose effect was better than dynamic programming and discrete particle swarm optimization.
关 键 词:离散粒子群算法 动态规划-自适应离散粒子群算法 机组优化组合 负荷分配 全局最优解
分 类 号:TK79[动力工程及工程热物理—流体机械及工程] TM612[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.252.232