检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程与电子技术》2010年第5期886-890,958,共6页Systems Engineering and Electronics
基 金:国家自然科学基金(60773044);总装备部重点基金(9140A26010308BQ0178);教育部创新团队支持计划资助课题
摘 要:研究了一类时变线性动态系统,在不同传感器以不同采样率对同一目标进行观测,并且各个传感器的观测数据存在不规律丢失情况下,给出了一种有效的信息融合方法。该方法通过数学推导,将多速率传感器数据融合转化为单速率传感器数据融合问题,并采用修正的联邦Kalman滤波器进行状态估计。新算法不需要对状态或观测进行扩维,计算量适当,从而保证了算法的实时性。在观测数据丢失的时刻,采用外推的观测值代替错误的观测数据,从而避免了传统算法的发散。理论分析和仿真实验验证了算法的有效性。A dynamic time-vary linear system is studied.An effective data fusion algorithm is presented in times of multiple sensors observing a single target with different sampling rates.The robustness of the algorithm in case of data missing is also considered,where measurements from each sensor are missing stochastically with certain probabilities.By technical processing,the multirate data fusion system is transformed into a single rate linear dynamic system.By use of the modified federated Kalman filter to the newly established system,the state estimation is obtained.The augmentation of state or measurement dimensions are avoided by use of the presented algorithm,and the real-time property is guaranteed.In times of measurements missing,the observation is replaced by the predicted one,and the divergence of the traditional Kalman filter is omitted.Theoretical analysis and simulation results show the effectiveness of the proposed algorithm.
关 键 词:数据融合 状态估计 多速率系统 不完全观测 卡尔曼滤波
分 类 号:TN911.72[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222