检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙涵璇[1] 谢凤英[1] 姜志国[1] 陈进[2]
机构地区:[1]北京航空航天大学宇航学院,北京100191 [2]麦克奥迪实业集团有限公司,厦门361006
出 处:《中国体视学与图像分析》2010年第1期13-17,共5页Chinese Journal of Stereology and Image Analysis
摘 要:结核杆菌的有效识别是实现结核杆菌显微图像自动分析的关键。论文针对萋尔-尼尔逊方法染色的显微图像,对结核杆菌的提取和识别进行研究。算法首先基于形态学top-hat变换对图像进行增强并进行阈值分割,然后对结核杆菌进行特征分析,定义并提取了包括颜色、形状和边界不规则性等在内的10个特征,最后运用BP神经网络进行识别。实验结果表明,该方法能够有效检测并识别结核杆菌。选取1 200个目标进行七折交叉验证,识别准确率达到98%。Effective identification of mycobacterium tuberculosis is the key to automatic analysis of mycobacterium tuberculosis in microscopic image.The algorithm of the extraction and identification of mycobacterium tuberculosis in the microscopic images of the Ziehl-Nelson stained bacteria were investigated in this study.Firstly,the microscopic images were enhanced using the morphology top-hat transform and segmented based on a threshold,and then the features,including color,shape and border irregularity were defined and calculated.Finally the mycobacterium tuberculosis was identified by BP neural network.The experiment results show that mycobacterium tuberculosis can be effectively detected and identified using the algorithm proposed in this paper.The accuracy has reached 98% using sever fold cross-validation on 1200 selected targets.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28