检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2010年第16期229-231,共3页Computer Engineering and Applications
基 金:上海市(第三期)重点学科项目(No.S30504);上海市研究生创新基金项目(No.JWCXSL0802)
摘 要:针对并行流水车间调度问题的特点,提出了一种基于多种群协同进化的改进量子粒子群算法(MC-QPSO)进行求解。首先将整个量子粒子种群分解为多个子种群,然后各个子种群独立地演化,并通过周期性共享搜索信息,以获得对自身信息的更新。最后,通过具体仿真实例进行了求解验证,结果表明,在求解并行流水车间调度问题时,基于多种群协同的量子粒子群算法,在收敛速度、寻优性能等方面,都要优于遗传算法。According to the characteristics of parallel flow-shop scheduling problem,a new quantum particle swarm optimizer,called the cooperative evolutionary QPSO with multi-populations(MC-PSO),is presented based on the analysis of the standard QPSO.The whole quantum particle swarm group is divided into several sub-groups.Every subgroup evolves independently and updates sharing information periodically.This paper uses a practical analysis to confirm the performance of the method.The results show that MC-QPSO is effective in solving the problem.The results of simulation indicate that MC-QPSO performs better than the genetic algorithm.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3