检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,合肥230039
出 处:《电子测量技术》2010年第5期62-65,共4页Electronic Measurement Technology
基 金:国家自然科学基金资助项目(60771033);博士点基金(200803570002)
摘 要:基于眼电(Electro-oculogram,EOG)的人机交互系统(HCI)是生物电信号处理领域的研究热点之一。在研究眼动信息的基础上,提出了一种EOG扫视信号特征提取与分类算法,该算法提取扫视信号的线性预测(Linear Predictive Coding,LPC)系数,对其作差分运算获取一阶差分线性预测系数,与归一化极值作为组合特征参数,通过神经网络对样本信号分类。实验室环境下,采用所提该法对来自6名眼部功能均正常的受试者扫视样本分类,平均分类正确率超过92%。实验表明,该法能准确地描述EOG扫视信号,具有较高实用价值。The research on human-computer interface (HCI) based on EOG is a hotspot in the field of bio-signal processing.Research on the basis of eye movements information,this paper presents a feature extraction and classification algorithm based on EOG saccadic signals,which extracts the saccadic signals' linear predictive coding (LPC) coefficients and then extracts first-order differential linear predictive coding coefficients and normalized extremum as the characteristic parameters.The sample signals are classified by an artificial neural network (ANN).Under the laboratory environment,the samples,got from six different subjects with normal eye function,are classified using the proposed algorithm,the average classification accuracy rate reaches more than 92%.The results show that the proposed algorithm can depict the EOG saccadic signals' features accurately and have practical use.
关 键 词:人机交互系统 线性预测系数 归一化极值 神经网络
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249