检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电子工程系
出 处:《中国图象图形学报(A辑)》1999年第2期110-114,共5页Journal of Image and Graphics
基 金:国家自然科学基金
摘 要:从目标和背景的类间差异性出发,提出了一种基于最大类间交叉熵准则的阈值化分割新算法。该算法假设目标和背景象素的条件分布服从正态分布,利用贝叶斯公式估计象素属于目标和背景两类区域的后验概率,再搜索这两类区域后验概率之间的最大交叉熵。比较了新算法与基于最小交叉熵以及基于传统香农熵的阈值化算法的特点和分割性能。Although several image thresholding algorithms based on minimum cross entropy criterion have been proposed in recent years, only the form of the criterion or a priori probability and conditional probability was employed. In this paper, a new algorithm based on maximum between class cross entropy using a posterior probability is presented for image thresholding taken into account the dissimilarity between object and background in image. Suppose the conditional distributions of object and background are modeled with normal distributions, the a posterior probabilities are computed by Bayes formula. The new algorithm is compared with a number of traditional algorithms based on Shannon entropy and minimum cross entropy by applying them to various test images.
分 类 号:TN919.8[电子电信—通信与信息系统] TP391.41[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30