检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学数学系,北京100081 [2]中国科学院数学与系统科学研究院,北京100190
出 处:《应用泛函分析学报》2010年第2期97-109,共13页Acta Analysis Functionalis Applicata
基 金:Supported by National Natural Foundation of China(10671116,10871133)
摘 要:考虑了关于二维守恒律的大时间步长Godunov方法.该方法是关于一维问题的自然推广.证明了文中给出的数值流函数下,该方法是守恒的.进一步还给出了近似Riemann解应满足的条件,并且证明了利用满足这些条件的近似Riemann解的大时间步长Godunov方法守恒.最后,补充证明了满足这些条件的近似Riemann解是满足熵条件的.The large time step(LTS) Godunov scheme for 2-D conservation laws is studied, which is a generalization of this kind of schemes for 1-D problems devised by LeVeque. We show that the 2-D large time step Godunov scheme can be written in conservation form, thus the limit of the solution is a weak solution due to Lax-Wendroff theorem. Then give some conditions for approximate solutions, and show that the large time step Godunov scheme can be written in conservation form replacing the true Riemann solutions by approximate Riemann solutions. And at the end of this paper, detail the proof of the approximate solver satisfying the entropy inequality motivated by Wendroff.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70