检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南阳师范学院土木建筑工程学院,河南南阳473061
出 处:《南阳师范学院学报》2010年第6期40-43,共4页Journal of Nanyang Normal University
基 金:河南省软科学研究计划项目(092400440076);河南省教育厅自然科学基础研究计划项目(2009B630006);南阳市科技局软科学项目(2008RK015)
摘 要:在借鉴国内外相关理论和方法的基础上,利用显著性成本理论和神经网络理论相结合对工程项目的投资进行估算.运用显著性成本理论,通过寻找显著性项目,简化工程造价估算的操作难度,从而解决操作烦琐的问题;并依据BP神经网络在大量已完工程资料中提取类似CSIs和显著性因子csf,从非线性角度实现了对项目投资的准确预测,并进行算例分析,从算例可以看到,预测值与实际值的相对误差很小,满足投资预测要求.Based on the reference to Chinese and foreign correlative theories and methods,this paper advances the model of cost estimation based on cost-significant theory and neural network theory.The cost-significant theory is put forward to solve the tedious operation issues by finding out significant items to simplify the operation difficulty of engineering cost estimates;then the back-propagation neural network model is made up according to the BP algorithm to"distill"CSIs and csf(cost significant factor)from the data and information of completed projects,which provides a practical solution for those problems according to the nonlinear theory.The basic theories of BPNN and CS are introduced and their applications are illustrated with an example.For example,we can see that the relative errors are so small that they can meet the accuracy demand of cost estimations after simulation.The result shows that the model based on cost-significant theory and neural network theory is accurate and successful.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175