基于多重特征提取的战场车辆声目标识别  被引量:9

Battlefield vehicle acoustic identification based on multiple feature

在线阅读下载全文

作  者:董伟[1] 王红亮[1] 黄洋文[1] 

机构地区:[1]中北大学电子测试技术国家重点实验室仪器科学与动态测试教育部重点实验室,山西太原030051

出  处:《传感器与微系统》2010年第7期30-32,共3页Transducer and Microsystem Technologies

基  金:国家自然科学基金资助项目(60575027)

摘  要:战场上车辆声音信号的构成非常复杂,采用单一的特征很难全面反映其特点,提取多种特征来构成特征向量就显得非常重要。应用改进的横虚警率检测(CFAR)算法对车辆声信号进行了分离,得到了数据的有效部分;提取了谐波集,Mel倒谱系数(MFCC)和小波能量3种特征,并应用主成分分析(PCA)方法对特征集进行了降维融合处理。实验结果表明:3种特征融合后的分类性能要好于单一特征,目标的识别率能够达到90%以上。Vehicle acoustic signals in battlefield, which consist of many different components are very complex. Because a single acoustic feature can hardly reflect full characteristics of the vehicle, muhiple features should be extracted to form charaeteristic vector. Vehicle acoustic signals are separated from all the acquired signals by using modified CFAR algorithm. The three features are extracted,including harmonic set, MFCC and wavelet energy. But the resulting feature vector is too large, so PCA method is applied to reduce the dimension of feature vector. The experiment results show that the combined three features are better than the single feature in classification Derformance and the identification rate can reach above 90 %.

关 键 词:特征提取 横虚警检测 特征降维 目标识别 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象