非参数估计方法  被引量:13

Survey of non-parametric estimation methods

在线阅读下载全文

作  者:张煜东[1,2] 颜俊[1] 王水花[1] 吴乐南[1] 

机构地区:[1]东南大学信息科学与工程学院,江苏南京210096 [2]哥仑比亚大学精神病学系脑成像实验室,纽约州纽约10032

出  处:《武汉工程大学学报》2010年第7期99-106,共8页Journal of Wuhan Institute of Technology

基  金:国家自然科学基金(60872075);国家高技术发展计划(2008AA01Z227);高等学校科技创新工程重大项目培育资金项目(706028)

摘  要:为了解决函数估计问题,首先讨论了传统的参数回归方法.由于传统方法需要先验知识来决定参数模型,因此不稳健,且对模型敏感.因此,引入了基于数据驱动的非参数方法,无需任何先验知识即可对未知函数进行估计.本文主要介绍最新的8种非参数回归方法:核方法、局部多项式回归、正则化方法、正态均值模型、小波方法、超完备字典、前向神经网络、径向基函数网络.比较了不同的算法,给出算法之间的相关性与继承性.最后,将算法推广到高维情况,指出面临计算的维数诅咒与样本的维数诅咒两个问题.通过研究指出前者可以通过智能优化算法求解,而后者是问题固有的.In order to solve the problem of function estimation,we first discuss traditional parametric regression method.Since it needs a priori knowledge to determine the model,the parametric method is not robust and is model-sensitive.Thus,data-driven non-parametric method is introduced,which needs not any a prior knowledge to estimate the unknown function.Eight major non-parametric methods are discussed as kernel method,local polynomial regression,regularization method,normal mean model,wavelet method,overcomplete dictionary,forward neural network,and radial basis function network.These algorithms are compared,and their coherence and inheritance are investigated.Finally,generalize the algorithms to high dimensionality and point out two problems as curse of dimensionality of computation and sample.The former can be settled down by intelligent methods while the latter is problem intrinsic.

关 键 词:参数统计 非参数统计 核方法 局部多项式回归 正则化方法 正态均值模型 小波 超完备字典 前向神经网络 径向基函数网络 

分 类 号:O212.7[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象