检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《国防科技大学学报》2010年第3期149-152,共4页Journal of National University of Defense Technology
基 金:国家自然科学基金资助项目(10571178)
摘 要:光顺样条是散乱数据拟合的理想函数,是噪声数据最优平滑的重要工具。因此,光顺样条的数学表示和计算的研究具有重要的意义。本文在一般的线性微分算子和线性泛函的情况下讨论光顺样条函数的构造和计算,通过构造一个适当的再生核Hilbert空间,使得所讨论的微分算子光顺样条成为该空间中的最小范数问题,再利用投影理论建立了光顺样条函数的再生核表示方法,并得到了插值偏差表达式。作为特例,还给出了奇次多项式光顺样条函数新的简洁的计算方法。Smoothing splines are well known to be the ideal functions for fitting of discrete data,and also the effective method for smoothing noisy data. Therefore,it is very important to study the construction and computation of smoothing splines. In this paper,the construction and computation of smoothing splines associated with general linear differential operators and linear functionals were discussed. By constructing an appropriate reproducing kernel Hilbert space framework,the proposed splines were expressed as minimum norm problems. Thus the expression and interpolation error of the smoothing spline were obtained via reproducing kernel. Based on this,a new method for computing polynomial smoothing splines was presented.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.169.195