检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《模式识别与人工智能》2010年第3期402-407,共6页Pattern Recognition and Artificial Intelligence
摘 要:给定数据库,在不考虑支持度和可信度情况下,事先能否预知最终会挖掘出多少条关联规则,这是个值得研究的问题.为此文中提出预期关联规则的概念,使上述问题转化成为如何计算预期关联规则集基数的问题.分别给出布尔型和数量型两种情况下的计算公式.对于数量型数据集,讨论当转换为布尔型数据后各个项集元素呈现的互斥性质.利用此性质导出一个膨胀矩阵和膨胀算法.该方法相对简洁地解决数量型数据集预期关联规则集基数的计算问题.计算和测试结果都表明,预期关联规则总量随着互斥元素的增加呈现下降趋势.这些结果对于深刻理解关联规则挖掘的实质,进而研发更加高效的挖掘算法十分有益.It is deserved to foresee how many association rules will be mined from a given database without taking support and confidence in consideration. Hence the concept of expecting association rule is proposed in this paper to turn the above problem into how to calculate the base number of an expecting association rule set. The categorical and continuous computing formulas are presented respectively. The exclusive property of items in itemset is discussed after the transformation of continuous data into categorical data. An expanding matrix and an expanding method is deduced by the exclusive property. This method is used to calculate the base number of an expecting association rule set of continuous dataset in a brief way. The analysis and test results show that the size of an expecting association rule set decrease as the amount of exclusive items increase. These results are helpful to understand the essence of association rule mining and furtherly develop more highly efficient mining algorithm.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117