检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国电子科技集团第28研究所,南京210007 [2]空军驻合肥地区军事代表室,合肥230000
出 处:《计算机工程与应用》2010年第5期177-180,共4页Computer Engineering and Applications
摘 要:针对传统典型相关分析(Canonical Correlation Analysis,CCA)的图像识别中出现的小样本(Small Sample Size,SSS)问题,提出二维典型相关分析(Two-Dimensional CCA,2DCCA)。首先阐述了2DCCA方法的基本原理并给出了类成员关系矩阵的构造方法,推导出了类成员关系协方差矩阵广义逆的解析解。其次,从理论上证明了2DCCA方法对于解决小样本问题的有效性。最后,利用人脸识别实验来测试该方法的性能,实验结果表明,2DCCA方法有效地解决了图像识别中常见的小样本问题,并且能取得较其他几种基于CCA的人脸识别方法更优的识别结果。The traditional Canonical Correlation Analysis(CCA) based image recognition methods always encounter the Small Sample Size(SSS) problem,which is due to the size of sample and less than the dimension of sample.In order to solve this problem, a new supervised learning method called Two-Dimensional CCA(2DCCA) is developed.The theory foundation of 2DCCA method is firstly developed,and the construction method for the class-membership matrix Y which is used to precisely represent the relationship between samples and classes in the 2DCCA framework is then clarified.Simultaneously,the analytic form of the generalized inverse of such class-membership matrix is derived.From experiment results on face recognition,not only can the SSS problem be effectively solved,but also better recognition performance than several other CCA based methods has been achieved.
关 键 词:典型相关分析 二维典型相关分析 图像识别 小样本问题
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.49.178