检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2010年第5期243-245,248,共4页Computer Engineering and Applications
摘 要:最优信息融合Kalman滤波算法给出了实时动态环境中线性方差最小的融合估计。采用该算法对机器人足球系统中的小球进行状态估计和预测,并给出了信息融合处理结构和该算法的具体实现步骤。实验结果表明,该算法可以克服单一视觉传感器采集的数据含有较大噪声等局限性,实现了对小球精确的状态估计和预测,具有可行性和优越性,并且在某一机器人视觉传感器出错时,系统仍具有良好的容错性和鲁棒性。The optimal information fusion Kalman filter algorithm gives the linear minimum variance in the dynamic environment.This paper applies the optimal information fusion Kalman filter algorithm to the ball state estimation and prediction in robot soccer system,and presents the processing structure of information fusion and detailed realization steps of the algorithm.The experimentation result shows that this algorithm can eliminate noises contained in single robot vision sensor data and precisely estimate and predict the state of the ball with good feasibility and advantage.Furthermore,when some robot vision sensor is faulty,it also has fault tolerance and robustness properties.
关 键 词:最优信息融合 KALMAN滤波 机器人视觉传感器 机器人足球系统
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120