检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭松[1] 刘心平[1] 史呈伟[1] 李立群[1] 孟群[2]
机构地区:[1]哈尔滨医科大学科研处 [2]哈尔滨医科大学公共卫生学院,黑龙江哈尔滨150081
出 处:《哈尔滨医科大学学报》2010年第3期230-232,共3页Journal of Harbin Medical University
摘 要:目的研究人工神经网络方法在识别肿瘤亚型中的有效性。方法利用小圆蓝细胞瘤的基因芯片数据,采用人工神经网络方法从分子层面对其亚型进行分类。在计算出每个基因信噪比指标的基础上,采用加权投票方法确定出特征基因,并利用线性神经网络方法构建分类器。结果该分类器在内部验证中获得了97.82%的正确率,在独立检验样本集的预测过程中获得了95%的预测精度。结论人工神经网络模型在对癌症的亚型识别以及治疗候选靶点的确定等领域具有很大的应用潜力。Objective To investigate the effectiveness of artificial neural network in identification of tumor subtypes.Methods Based on the microarray data of the small,round blue-cell tumors,artificial neural network was employed to classify the tumor subtypes in molecular level.Firstly,the odds ratio was calculated for each gene.Secondly,a weighted vote rule was used for identification of feature genes.Finally,the classifications were constructed by linear neural network.Results The average accuracy of the classification in the inner-validation was 97.82%,and 95% was obtained by using the independent test sample set.Conclusion There is a potential application of the artificial neural network for tumor diagnosis and therapy by identification of tumor subtypes and candidate targets.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74