检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:符五久[1]
出 处:《振动与冲击》2010年第7期204-209,共6页Journal of Vibration and Shock
基 金:江西省教育厅科技项目(GJJ09265)
摘 要:将保守Duffing系统作为未扰系统,并对它分四种情形进行了严格求解。用Melnikov函数方法研究了Duffing-Vanderpol系统的次谐分岔,获得了Duffing-Vanderpol系统的Hopf分岔条件。根据这些条件,在参数空间中确定了Hopf分岔曲线。在分岔曲线上取参数进行了数值模拟,所获得的奇、偶阶Hopf分岔与理论分析的结果完全一致。Duffing equation x··+Gx+ξx3=0 was taken as a non-perturbed Hamiltonian system in a Duffing-van der pol system x··+Gx+ξx3+εβ(1+ηx2)x·=εf cos ωt,its four conditions were solved rigorously.Subharmonic bifurcation of the Duffing-van der pol system was studied by using the sub-Melnikov method,Hopf bifurcation conditions were obtained for the Duffing-van der pol system.Hopf bifurcation curves were gained based on the bifurcation conditions in the parameter space.On the bifurcation curves,parameters were taken to do numerical simulations,odd number order and even number order Hopf bifurcations obtained were in correspondence with the theoretical analyses.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31