具有分布偏差变元的二阶中立型时滞微分方程的振动性  

Oscillation of Second-Order Neutral Delay Differential Equations with Distributed Deviating Argument

在线阅读下载全文

作  者:李鹏松[1] 张雪艳[1] 

机构地区:[1]东北电力大学理学院,吉林吉林132012

出  处:《吉林大学学报(理学版)》2010年第4期612-616,共5页Journal of Jilin University:Science Edition

基  金:国家重点基础研究发展计划973项目基金(批准号:2007CB206904)

摘  要:考虑如下具有分布偏差变元的二阶中立型时滞微分方程:(r(t)ψ(x(t))Z′(t))′+integral (p(t,ξ)f[x(g(t,ξ))]dσ(ξ)) from n=a to b=0(t≥t0)的振动性,其中Z(t)=x(t)+q(t)x(t-τ),τ≥0.利用广义的Riccati技巧和积分均值不等式,并借助于一类新函数Φ(t,s,l)和类函数F,放宽了对函数f的限制,即当f不满足下述条件:存在一个正数M,使得︱f(±uv)︱≥Mf(u)f(v),uv>0时,建立了具有分布偏差变元的二阶中立型时滞微分方程新的振动准则,数值实例验证了所得结果的正确性.The oscillation of second-order neutral delay differential equations with distributed deviating argument:(r(t)ψ(x(t))Z′(t))′+integral (p(t,ξ)f[x(g(t,ξ))]dσ(ξ)) from n=a to b=0(t≥t0),where Z(t) = x(t) + q(t) x(t-τ),τ≥0 was investigated via a generalized Riccati technique and the integral averaging inequality,a class of new functions Φ(t,s,l) and the function class F,we relaxed the restriction on function f,namely,when f does not satisfy the following conditions:there exists M 0,such that ︱f(± uv)︱≥Mf(u) f(v),uv 0,and hence established some new oscillation criteria for second-order neutral equations with distributed deviating argument.An example was given to illustrate the results.

关 键 词:振动 中立型时滞微分方程 分布偏差变元 

分 类 号:O175.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象