检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工业大学理学院,辽宁锦州121001 [2]上海理工大学管理学院,上海200093
出 处:《辽宁工程技术大学学报(自然科学版)》2010年第3期521-524,共4页Journal of Liaoning Technical University (Natural Science)
基 金:国家自然科学基金资助项目(70471065)
摘 要:为了获得非线性系统的连续逼近,提出一种基于Haar尺度变换的连续分片线性逼近算法。由非线性函数的Haar尺度变换获得尺度系数,用紧支撑连续分片线性基函数重构出非线性函数的连续分片线性逼近。理论分析证明这种逼近可以达到任意精度。仿真试验表明:相对于Haar小波逼近,连续分片线性逼近的误差收敛得更均匀。算法的一个显著优势是可以给出逼近的解析表达式。因为Haar尺度变换的计算复杂度低(相当于算术平均),紧支撑连续分片线性基函数的结构简单,所以算法易于推广。In order to achieve continuous approximation on nonlinear systems,this paper presents an algorithm for continuous piecewise linear approximation based on Haar wavelet transform.The scaling coefficients are obtained using the Haar scaling transformation of a nonlinear function,and then the continuous piecewise linear approximation of the nonlinear function is reconstructed using the compactly supported continuous piecewise linear basis functions.Theoretical analysis proves that the approximation can achieve any accuracy.The simulation demonstrates that the error convergence of the continuous piecewise linear approximation is more uniform than that of the Haar wavelet approximation.It is an obvious advantage that the algorithm provides an analytical expression of approximation.Since the computational complexity of the Haar scale transform(correspond to arithmetic average) is low and the structure of the compactly supported continuous piecewise linear basis functions is simple,it is ease for a wide application of proposed algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249