基于无约束迭代学习的间歇生产过程优化控制  被引量:4

Nonrestraint-iterative learning-based optimal control for batch processes

在线阅读下载全文

作  者:贾立[1] 施继平[1] 邱铭森[2] 俞金寿[3] 

机构地区:[1]上海大学机电工程与自动化学院自动化系,上海市电站自动化技术重点实验室,上海200072 [2]新加坡国立大学工程学院,新加坡119260 [3]华东理工大学自动化研究所,上海200237

出  处:《化工学报》2010年第8期1889-1893,共5页CIESC Journal

基  金:上海市国际科技合作基金项目(08160705900);上海市科委地方高校专项基金项目(08160512100);上海市基础研究重点项目( 09JC1406300 );教育部博士点基金项目(20093108120013);上海市教育委员会科研创新项目(09YZ08);上海大学'十一五'211建设项目;2009年上海大学研究生创新基金项目(SHUCX092212)~~

摘  要:针对基于迭代学习控制的间歇过程优化控制算法难以进行收敛性分析的难题,本文基于数据驱动的神经模糊模型提出一种新颖的间歇过程无约束迭代学习控制方法,通过调节因子的变化去除了约束条件,使控制轨迹在批次轴上收敛,并创新性地对优化问题的收敛性给出了严格的数学证明。在理论研究的基础上,将本文提出的算法用于间歇连续反应釜的终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径。Considering that it is difficult to analyze the convergence of iterative learning optimal control for quality control of batch processes,a novel iterative learning control based on data-driven neural fuzzy model for product quality control in batch process is proposed in this paper,which results in the convergence of the product quality and control trajectory in batch axes.Moreover,the rigorous proof is given.Lastly,to verify the efficiency of the proposed algorithm,it was applied to a benchmark batch process.The simulation results show that the proposed method is better and can be applied to practical processes,thus it provides a new way for the control of batch processes.

关 键 词:间歇过程 产品质量控制 迭代学习 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象