检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学,武汉430063
出 处:《铁道工程学报》2010年第7期42-47,共6页Journal of Railway Engineering Society
基 金:国家高技术研究发展计划(863)项目(2007AA11Z107);国家自然科学基金项目(10372075)
摘 要:研究目的:以哈大客运专线运粮河特大桥墩台沉降观测为背景,介绍运粮河特大桥沉降观测的技术要求与观测方法;采用曲线拟合法综合分析了桥梁墩台的沉降变形趋势,运用灰色系统的新陈代谢GM(1,1)模型建立累积沉降的预测模型,来分析桥梁墩、台的沉降量,掌握其变形规律。研究结论:通过对哈大客运专线运量河特大桥墩台沉降观测数据进行的分析与评估,采用曲线拟合法分析其沉降变形趋势,运用灰色系统模型对桥梁墩台进行预测,得出以下结论:桥梁墩台的沉降已经渐渐趋于稳定,运用灰色系统的新陈代谢GM(1,1)模型建立累积沉降的预测模型,预测结果表明该模型精度较高,可以用于累积沉降的预测。Research purposes:Taking the settlement observation of Yunlianghe Bridge of Harbin-dalian Passenger Dedicated Line as the background,the introduction is given to the observation method and requirement for settlement observation of Yunlianghe Bridge.The general analysis of the future settlement volume of the pier and abutment is made with curve fitting method and the prediction model for the accumulated settlement established by the metabolic GM(1,1)model of gray system so as to know the settlement law.Research conclusions:The settlement of the pier and abutment of Yunlianghe Bridge of Harbin-Dalian Passenger dedicated Line becomes stable.With the metabolic GM(1,1)model of gray system,the prediction model for accumulated settlement can be established easily because of needing a little measured data.Although there is a certain gap between the predicted data and the measured data,but the prediction model can reflect the change trend of the settlement at the observation point and the approximate settlement volume at the observation point can be known before the next observation,so the prediction model is significant in prediction of the settlement.In addition,the prediction model has a high accuracy and it can be used for prediction of the accumulated settlement.
关 键 词:桥梁 墩台 客运专线 沉降观测 曲线拟合 灰色系统理论 预测模型
分 类 号:U443[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28