基于大项集组的互联网用户兴趣建模  被引量:1

在线阅读下载全文

作  者:廖开际[1] 叶东海[1] 席运江[1] 

机构地区:[1]华南理工大学工商管理学院,广州510640

出  处:《统计与决策》2010年第15期49-52,共4页Statistics & Decision

基  金:国家自然科学基金项目(70871043;70801028)

摘  要:为解决互联网用户兴趣模型在实际应用中存在的数据稀疏度和用户多兴趣问题,文章提出了基于大项集组的用户兴趣建模方法,将项目和用户评价之间的映射关系转化为项目属性和用户评价之间的映射关系来解决稀疏度问题,并采用高阶大项集组来描述用户的多兴趣问题。最后通过网络爬虫在豆瓣网上采集用户对电影的评分数据对建模方法进行了初步实验验证。结果显示,这种基于项目属性大项集组的用户兴趣推荐方法,和现有的推荐方法相比,能够有效地降低目标用户和推荐知识之间的差异度。

关 键 词:用户兴趣 大项集组 数据稀疏度 相似度 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象