检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张红亮[1] 杨浩[1] 张超[1] 魏玉光[1] 高咏玲[2]
机构地区:[1]北京交通大学交通运输学院,北京100044 [2]中央财经大学商学院,北京100081
出 处:《交通运输系统工程与信息》2010年第4期161-165,共5页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(60776828)
摘 要:从编组站驼峰解体作业中出现的问题出发,在深入分析重载大轴重货车车场内超速连挂和轻载车辆逆向大风条件下溜放不到位这一矛盾问题的基础上,指出其根本原因是驼峰自动化系统的出口定速模型在车组溜放出口定速中单位基本阻力取值不合理,和没有考虑车组溜放时环境条件变化.基于此,提出了单位合阻力的概念,根据车组溜放过程中的能量守恒定律,建立了间隔制动出口动态定速模型.利用模糊逻辑的不确定信息处理能力,兼以神经网络的自学习能力,建立了基于模糊神经网络的目的制动出口定速模型.最后,通过驼峰仿真实验,验证了模型的有效性,为驼峰车组溜放速度控制提供了理论参考.Based on practical issues found in field investigation, the reasons of over-speed coupling of new heavy axle load cars were analyzed deeply, and so were that for inadequate roiling of light-load cars under unfavorable condition. The reason found to be that, the traditional exit-speed-control model for hump skating has unreasonable basic resistance value for exit speed calculation, and ignore the environmental impact. To resolve these problems, the concept of the unit co-resistance was put forward, and a dynamic interval speed-control model has established based on the energy conservation law. Moreover, based on uncertain information processing ability of fuzzy logic and self-learning ability of neural network, a target speed-control model based on fuzzy neural networks was estab- lished. Finally, a hump was taken as an example to validate the models, which provided reference for speed con- trolling of hump car-unit rolling.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117