检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家测绘局大地测量数据处理中心,陕西西安710054 [2]长安大学地质工程与测绘学院,陕西西安710054 [3]西安测绘研究所,陕西西安710054 [4]信息工程大学测绘学院,河南郑州450052
出 处:《测绘学报》2010年第4期338-343,共6页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(40774001,40841021);国家863计划(2007AA12Z331)
摘 要:提出一种改进的粒子滤波,试图提高粒子滤波的收敛速度,减弱非线性模型线性化误差和非正态分布随机误差对动态单点定位结果的影响。首先固定单差无电离层模糊度,以减少状态参数向量的维数,提高初始定位的精度和粒子滤波的收敛速度;采用Kalman滤波作为粒子滤波的预滤波,以提高粒子滤波的重点采样效率,并提高采样粒子精度,减缓粒子退化。利用一个实测动态GPS数据验证表明,改进的粒子滤波可以提高动态GPS的定位精度。A modified particle filtering is proposed.The convergence speed of the particle filtering is tried to be improved.The influences of linearization of nonlinear functional models and the non-Gaussian random errors to the results of dynamic precise point positioning will be weakened.In the new procedure,the free-ionosphere ambiguities are fixed at first to reduce the number of parameters in the state vector.The accuracy of the initial positioning results is improved and the convergence of the particle filtering is modified.Kalman filtering as predicted filtering of particle filtering is employed to improve the efficiency of the important sampling of the particle filtering and the precision of the sampling particles,as well as to slow down the degeneracy of the particle.An actual dynamic GPS data set is employed to test the new particle filtering procedure.It is shown that the modified procedure of the particle filtering based on fixing free-ionosphere ambiguities can improve the accuracy of the dynamic precise point positioning.
关 键 词:精密单点定位 KALMAN滤波 粒子滤波(PF) 非线性模型 高斯分布
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145