检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宜宾学院数学系,重庆宜宾644000 [2]四川大学数学系,成都610064
出 处:《数学物理学报(A辑)》2010年第4期1144-1157,共14页Acta Mathematica Scientia
摘 要:设E是具有一致Gateaux可微范数的严格凸的自反的Banach空间,K是E的非空闭凸子集而且是E的sunny非扩张收缩核.设f:K→K是一压缩映象,P:E→K是一sunny非扩张保核收缩,{Tn}n∞1:K→E是一可数无限簇非扩张非自映象且是[0,1]中的非负数列.考虑下列迭代序列其中Wn是由P,Tn,T(n-1),…,T1和λn,λ(n-1),…,λ1,n≥1生成的W-映象.该文在较弱条件下用黏性逼近方法证明了迭代序列{x_n}强收敛于p∈F且p是下列变分不等式〈(I-f)p,j(p-x*)〉≤0,x*∈F的唯一解.Let E be a real strictly convex and reflexive Banach space with a uniformly Gateaux differentiable norm and K be a nonempty closed convex subset of E which is also a sunny non- expansive retract of E. Let f:K→K be a contractive mapping, P be a sunny nonexpansive T retraction of E onto K and { n}n=1 : K → E be a family of countable infinite nonexpansive nonself-mappings such that the common fixed point set seqence of nonnegative numbers in [0, 1]. Consider the following iterative sequence where Wn is the W-mapping generated by P, Tn,Tn-1,… ,T1 and λn,λ(n-1),…,λ1,n≥1 for any n ≥ 1. It is shown that under very mild conditions on the parameters, the sequence {Xn} converges strongly to p C F, where p is the unique solution in F to the following variational inequality 〈(I-f)p,j(p-x*)〉≤0,x*∈F
关 键 词:非扩张非自映象 一致Gateaux可微范数 黏性逼近 公共不动点
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.18.100