基于改进遗传算法与LS-SVM的变压器故障气体预测方法  被引量:7

Predicting Method for Dissolved Gas in Transformer Oil Based on Improved Genetic Algorithm and LS-SVM

在线阅读下载全文

作  者:王罡[1,2] 杨海涛[3] 胡伟涛[4] 黄华平[2] 李宁远[2] 

机构地区:[1]天津市滨海供电局,天津300450 [2]华北电力大学电力系统保护与动态安全监控教育部重点实验室,河北保定071003 [3]四川省广安电业局调通中心,四川广安638000 [4]河北省电力公司超高压输变电分公司,河北石家庄050070

出  处:《高压电器》2010年第9期11-14,18,共5页High Voltage Apparatus

基  金:长江学者和创新团队发展计划资助项目(IRT0515)

摘  要:最小二乘支持向量机(LS-SVM)能较好地解决小样本、非线性数据特征的多分类问题,适用于电力变压器油色谱故障气体预测,但参数c与σ2的选取对预测结果影响较大,有必要对其进行优化选择。笔者提出一种基于改进遗传算法(IGA)的参数寻优方法,并将其应用到变压器油中故障气体预测。IGA算法采用了编码机制,随机产生初始种群,可快速扩大搜索空间,稳定群体中个体多样性,有效提高全局搜索能力和收敛速度。最后进行了多组现场数据的实例分析,结果表明:基于IGA进行参数优化后的预测准确率明显优于传统LS-SVM预测结果。LS-SVM(least square support vector machine) is applied to solve the multi-classification problems of small samples and non-linear data,c and σ2 are suitable for predicting dissolved gas in transformer oil.However,the selection of the parameters has clear impacts on the result of prediction,so it is necessary to optimize those parameters.In this paper,a new method to optimize those parameters based on IGA(improved genetic algorithm) is proposed and applied to predict dissolved gas in transformer oil.The IGA uses the encoding mechanism to randomly generates the initial population,rapidly expands the search space,stabilizes the diversity of the individuals in population,and effectively improves the global search ability and convergence speed.Case analyses of some sets of oil chromatogram data demonstrate that the prediction accuracy of the IGA-based LS-SVM is better than that of the conventional LS-SVM model.

关 键 词:变压器 改进遗传算法 最小二乘支持向量机 参数优化 油中气体 

分 类 号:TM407[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象