检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹海兵[1] 刘兆[1] 刘亚东[1] 胡德文[1]
机构地区:[1]国防科学技术大学机电工程与自动化学院,长沙410073
出 处:《计算机应用》2010年第9期2559-2562,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60835005;60771062);国家973计划项目(2007CB311001)
摘 要:神经元尖峰电位的识别和分类,是神经信息处理中的关键环节之一,而尖峰电位的特征提取是识别和分类的重要基础。针对尖峰电位的特征提取和分类,提出一种基于局部保持投影(LPP)的无监督算法,对近邻参数进行了自动识别和选择,使用基于原型向量的分布离散度标准,尖峰电位的特征得到充分提取和分离。仿真和实际数据实验结果表明:基于局部保持投影的无监督特征提取和分类算法,比传统主成分分析(PCA)方法能更加有效地实现特征提取和分离。The spike sorting, including neuronal spike waveform acquisition and classification, is one of the important procedures in neuronal information processing, and its feature extraction and recognition are the basis of the above issues. Based on Locality Preserving Projection ( LPP) algorithm, an unsupervised feature extraction and classification algorithm was proposed. The neighbor parameter was selected automatically, the distribution dispersion standard was obtained according to the original data set, and the features of extraction results in spikes were separated effectively. The application in simulation and real experimental data show that, the proposed method based on the LPP can more effectively extract and separate features of spikes in comparison of the traditional Principle Component Analysis ( PCA) algorithm.
关 键 词:局部保持投影 电位分类 特征提取 无监督分类 主成分分析
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81