检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013 [2]江苏科技大学计算机科学与工程学院,江苏镇江212003
出 处:《计算机应用研究》2010年第9期3253-3255,共3页Application Research of Computers
基 金:国家自然科学基金资助项目(60702056)
摘 要:针对传统的神经网络训练算法收敛速度慢、易陷入局部最优的问题,提出了一种基于改进的分期变异微粒群优化算法(SMPSO)的神经网络相关性剪枝优化方法。SMPSO在初期使适应度过低的微粒发生变异,在后期使停滞代数过高的个体极值和全局极值发生变异,后将SMPSO用于优化神经网络相关性剪枝算法。实验结果表明,该方法与采用BP算法及标准PSO算法进行相关性剪枝相比,在训练收敛速度、剪枝效率及分类正确率三方面都有较大提高。The traditional neural network training algorithm converges slowly and is easy to fall into local optimum. In response to these shortcomings,this paper proposed a neural network correlation pruning method optimized with improved staging mutation particle swarm optimization algorithm ( SMPSO) . SMPSO mutate particles that had too low fitness at early stage and mutate individual extreme and global extreme that stagnate in excessive iteration latterly. Then used SMPSO to optimize neural network correlation pruning algorithm. The experiment results show that neural network correlation pruning method optimized by SMPSO is more efficient than that optimized by BP and standard PSO. It has greater improvement in the convergence velocity of training,the efficiency of pruning and the accuracy of classification.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185