周期复合材料振荡系数双曲问题的Galerkin多尺度有限元方法  

Galerkin Multiscale Finite Element Method for Periodic Composite Materials Hyperbolic Problems with Oscillating Coefficients

在线阅读下载全文

作  者:孙艳萍[1] 宋士仓[2] 

机构地区:[1]河南工程学院数理科学系,河南郑州451191 [2]郑州大学数学系,河南郑州450052

出  处:《河南工程学院学报(自然科学版)》2010年第3期54-60,共7页Journal of Henan University of Engineering:Natural Science Edition

摘  要:通过双曲微分算子的局部解构造一组多尺度有限元基,利用这组多尺度有限元基构造出合适的多尺度有限元空间,然后利用Galerkin有限元方法求解周期复合材料振荡系数双曲问题,并分析了它的半离散多尺度有限元解的收敛性.In this paper,a Galerkin multiscale finite element method for solving periodic composite materials hyperbolic problems with oscillating coefficients is provided.And a numerical method is designed which is capable of correctly capture the large scale components of the solution on a coarse grid without accurately resolving all the small scale features in the solution.This is accomplished by incorporating the local microstructures of the differential operator into the finite element base functions.As a consequence,the base functions are adapted to the local properties of the differential operator.And the method is provided about the convergence analysis for Galerkin semi-discrete multiscale finite element solutions.

关 键 词:周期复合材料 振荡系数 双曲问题 Galerkin多尺度有限元方法 

分 类 号:O242.2[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象