检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:荆凯[1,2] 徐波[1,2] 王佳林[1,2] 许后磊[1,2]
机构地区:[1]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098 [2]河海大学水资源高效利用与工程安全国家工程研究中心,江苏南京210098
出 处:《人民黄河》2010年第9期113-114,117,共3页Yellow River
基 金:国家自然科学基金资助项目(50909041;50879024);国家科技支撑计划课题(2008BAB29B03);河海大学自然科学基金资助项目(2008426811)
摘 要:针对大坝安全监控神经网络模型中选入因子较多,使网络权值的计算成为高维问题,提出将粒子进化-多粒子群优化算法应用到人工神经网络,建立了EPSO-NN模型。该方法改善了BP神经网络易陷入局部极值和解不稳定的缺点。通过工程实例表明:EPSO-NN模型收敛速度快,求解稳定,预测精度比最小二乘回归和BP-NN高。
关 键 词:粒子群优化算法 粒子进化 神经网络 大坝安全监控
分 类 号:TV698.1[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38