检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹鹏[1] 王宗军[1] 肖德云[2] 薄纯林[3]
机构地区:[1]华中科技大学管理学院,湖北武汉430074 [2]武汉理工大学经济学院,湖北武汉430070 [3]交通银行审计部,上海200120
出 处:《武汉理工大学学报(信息与管理工程版)》2010年第5期815-819,共5页Journal of Wuhan University of Technology:Information & Management Engineering
基 金:国家自然科学基金资助项目(70872033)
摘 要:指出了现有企业经营困境预测模型和指标体系的不足;针对高科技企业的特性,通过结合智力资本、外部环境因素及传统财务指标构建相对完备的预测指标体系,将基于粗糙集和神经网络相耦合的粗集神经网络模型作为预测方法,对92家高科技企业组成的检验样本进行实证分析,结果表明,该模型的预测正确率为96.7%,比神经网络的预测精度更高,且所需训练时间更短,生成规则更少,具有较大的实用价值。Disadvantages of some prediction models and indicator system of enterprise financial distress were figured out;and a more completed prediction indicator system was constructed by adding the intellectual capital and outer external environment indicators.The RNN(rough neural network) prediction model is a hybridism of rough set theory and neural networks.When the model was applied to predict a sample which included 92 high-tech enterprises,the accuracy of prediction was 96.7%.The RNN model also shortened the training time and generated fewer rules than the NN model.Therefore,it could be considered as a realistic prediction tool.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.32.191