检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓君[1]
机构地区:[1]中国社会科学院研究生院哲学系
出 处:《逻辑学研究》2010年第3期67-79,共13页Studies in Logic
基 金:"北京市哲学社会科学‘十一五'规划项目:逻辑语义学研究(06BaZX022)"的资助
摘 要:本文是笔者对S.Peters与D.Westerst(?)hl([7])的成果的拓展研究。首先介绍相关的概念。其次,笔者详细证明了类型为〈1,1〉的广义量词的对称性与单调性的关系定理。然后,笔者给出了该类量词的余对称性、余相交性和余驻留性定义,接着笔者提出并证明了关于这三个性质的四个定理,而且还详细证明了余对称性与单调性的关系定理。最后,笔者探讨了具有(余)驻留性和(余)对称性的〈1,1〉类型的广义量词的数字三角形的特点。由于〈1,1〉类型的广义量词在自然语言中普遍存在,所以,本文的研究对广义量词理论的发展具有一定的理论价值,对自然语言的计算机信息处理也具有一定的实践指导意义。This essay is to extend the work of Stanley Peters and Dag Westersathl ([7]) . Firstly, a brief background review is made on the relevant notions. Secondly, the relational theorem between symmetry and monotonicity for type (1, 1) quantifiers is proved in details. Thirdly, three properties of co-symmetry, co-intersectivity and co-conservativity for type (1, 1) quantifiers are defined, and four theorems of these properties are posed and proved, and then the theorems between their co-symmetry and monotonicity are proved in details. At last, the characteristics of (co-) conservativity and (co- )symmetry of the type (1, 1) quantifiers in number triangles is probed. Since type (1, 1) quantifiers are ubiquitous in natural languages, the study is of important theoretical values for the development of generalized quantifier theory and of practical significances for information processing in natural languages.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.200.242