截锥壳驻波颤振极限环研究  被引量:3

Li mit Cycle Oscillation of Conical Shells with Standing Wave Flutter

在线阅读下载全文

作  者:范晨光[1] 杨翊仁[1] 鲁丽[1] 

机构地区:[1]西南交通大学力学与工程学院,四川成都610031

出  处:《西南交通大学学报》2010年第5期713-717,共5页Journal of Southwest Jiaotong University

基  金:国家自然科学基金和中国工程物理研究院联合基金资助项目(10576024);高校博士点新教师基金资助项目(20070613032)

摘  要:为研究大挠度非线性位移-应变条件下,截锥壳非线性颤振响应特性,基于活塞理论的气动力法,建立了超音速截锥壳非线性气动弹性运动方程.采用微分求积法对方程进行离散化变换,在驻波颤振假设下,用低阶固有模态缩减自由度数,模拟驻波颤振极限环幅值及随气动参数的变化过程.结果表明:前6阶模态下缩减自由度数,可获得较为精确的解;当气动压力参数增大至7 312时,系统经过Hopf分叉后进入极限环运动.To study the nonlinear fluttering response of a truncated conical shell under large-amplitude nonlinear vibrations,aeroelastic equations were derived using the aerodynamic force method of the piston theory.The discretization of the equations was realized with differential quadrature method.The effects of aerodynamic parameters on the amplitude of limit cycle oscillation were calculated under an assumption of standing-wave flutter mode.The degree of freedoms was reduced by taking the lower orders of natural modes to decrease the scale of nonlinear analysis.Reasonable accurate solutions were obtainable for the first 6 low orders of modes with reduced freedom of degrees.The shell motion turned into limit cycle oscillation via Hopf bifurcation as the aerodynamic pressure parameter increased to 7 312.

关 键 词:截锥壳 颤振 极限环 微分求积法 活塞理论 

分 类 号:O323[理学—一般力学与力学基础] V215.3[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象