检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南科技大学信息工程学院,四川绵阳621010 [2]西南科技大学国防科技学院,四川绵阳621010
出 处:《信息与电子工程》2010年第5期607-611,624,共6页information and electronic engineering
基 金:西安电子科技大学综合业务网理论及关键技术国家重点实验室资助项目(ISN10-09)
摘 要:对粗糙集、决策树C4.5算法进行了研究,提出用粗糙集和决策树相结合的方法设计CR知识挖掘模型,并通过案例研究其可行性;利用基于MATLAB 802.11a物理层仿真平台收集的数据作为CR感知样值,通过样本值训练决策树序列,构建决策树提取知识,并用混淆矩阵法对设计模型的准确性及性能进行评价。实验结果表明,该方法设计模型的分类准确率高,增强了知识的可解释性,能够初步达到认知无线电知识挖掘和对以往经验学习的目的。It is one of the key issues that making knowledge discovery effectively in a Cognitive Radio(CR) engine design.Basing on the research about Rough Set Theory and C4.5 algorithm of decision tree,this study presented a model of CR knowledge discovery designed by combination of rough set and decision methods and studied its feasibility through a case.Using data based on simulation platform of MATLAB 802.11a physical layer as CR perception sample,decision tree sequence was trained,and decision tree was built for knowledge extraction.Then the accuracy and performance of the design model was evaluated by confusion matrix.The simulation results show that the proposed design model gets high classification accuracy rate,can enhance the interpretability of knowledge,and therefore has preliminarily achieved the purpose of knowledge discovery for cognitive radio and learning from the experiences.
关 键 词:认知无线电 知识挖掘 决策树 粗糙集 C4.5算法
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117