Meta-sided exchange环及其扩张  被引量:1

Meta-sided Exchange Rings and Their Extensions

在线阅读下载全文

作  者:郭莉琴[1] 何建伟[1] 卲海琴 

机构地区:[1]天水师范学院数学与统计学院,甘肃天水741001

出  处:《四川理工学院学报(自然科学版)》2010年第5期516-518,共3页Journal of Sichuan University of Science & Engineering(Natural Science Edition)

基  金:天水师范学院中青年教师科研资助项目(TSA020231)

摘  要:讨论了meta-sided exchange环的性质。证明了如果R是Abelian meta-sided exchange环,则对R的任意素理想P,都有R/P是局部环;如果R是Abelian环,(S,≤)是严格序幺半群且对任意s∈S,都有0≤s,则广义幂级数环[[RS,≤]]是meta-sided exchange环当且仅当R是meta-si-ded exchange环。Some properties of meta-sided exchange rings are discussed in this paper.It is shown that if R be a meta-sided exchange ring with all idempotents central,.R/P is local ring for any prime ideal PofR.And it also proved that let R be an Abelian ring and(S,≤) a strictly ordered monoid satisfying the condition that 0≤s for every s∈S,then generalized power series ring ] is meta-sided exchange ring only if R is meta-sided exchange ring.

关 键 词:EXCHANGE环 meta-sidedexchange环 局部环 广义幂级数环 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象